
CS 61A Challenge Problems:

Advanced Scheme
Solutions at https://alextseng.net/teaching/cs61a/

Alex Tseng

1 Functions and Lambda

(a) Write filter. filter takes in a list and another predicate function, and returns a list of only the items
that satisfy this predicate function.
(filter ’(1 2 3 4 5 6 7) (lambda (x) (= (modulo x 3) 0))) ---> (3 6)

(b) Write map, which takes in a list and a function, and returns a new list with the same elements but with
the function applied to them.
(map ’(1 2 3 4 5 6 7) (lambda (x) (* x x))) ---> (1 4 9 16 25 36 49)

(c) Write accumulate. accumulate is the Scheme version of reduce in Python. It takes in a list, a function,
and a seed. It condenses (or accumulates) the elements of the list using the function, where the starting
point is the seed.
(accumulate ’(1 2 3 4 5 6 7) (lambda (x y) (+ x y)) 0) ---> 28

(accumulate ’(1 2 3 4 5 6 7) (lambda (x y) (* x y)) 1) ---> 5040 ; 7!

(d) Write the function compose, which takes in two functions f and g and evaluates to a new function that
is the composition f(g(.)). Assume f and g are single-argument functions.
((compose (lambda (x) (* x x)) (lambda (x) (+ x 2))) 4) ---> 36

1



(e) Write the function safe-fn. safe-fn takes in a regular single-argument function and a predicate
function, and evaluates to a new function that is a safer version by checking the argument using the
predicate before evaluating.
((safe-fn sqrt (lambda (x) (and (number? x) (> x 0)))) 16) ---> 4

((safe-fn sqrt (lambda (x) (and (number? x) (> x 0)))) "not a number") ---> #f

((safe-fn sqrt (lambda (x) (and (number? x) (> x 0)))) -1) ---> #f

(f) *Challenge* Write a function replicate that takes in a list and returns a new list with each element
replicated k times.
(replicate ’(1 2 3) 3) ---> (1 1 1 2 2 2 3 3 3)

(g) Write a function remove-k that removes the kth element from a given list.
(remove-k ’(0 1 2 3 4 5) 4) ---> (0 1 2 3 5)

2



A run-length encoding is a way of decreasing the space required to store certain types of data. The
general idea of a run-length encoding is that in a lot of types of data, there are long sequences of
consecutive items that are the same (runs). For example, in strings, many characters in a row could be
the same. In images, there could be a consecutive sequence of many pixels of the same color (JPEGs use
this method). A run-length encoding compresses this data down by storing only 1 copy of an element
in a run, and the number of times it appears, instead of many copies of the same element. In these next
two problems, we will explore a way of performing run-length encoding and decoding on Scheme lists.

(h) Given a run-length encoding, write a function decode that turns an encoded list of elements and their
counts into the original list. The encoded list consists of the same elements, but where there is a run of
more than 1 of the same element in a row, they are condensed into a pair.
(define code ’((a . 4) (b . 2) c a (b . 3)))

(decode code) ---> (a a a a b b c a b b b)

Hint: There is a very easy way to write this function, using some of the functions you have already
written above.

(i) *Challenge* Write the corresponding encode function that turns a list of elements into a run-length
encoded list.
(encode ’(a b b b c d d e a)) ---> (a (b . 3) c (d . 2) e a)

(equal? (encode (decode code)) ---> #t)

Hint: It might be easier to start by writing a helper functions, where a run of 1 element is still encoded
as (x . 1) instead of just x, and fix it later using a function you have already written above.

3



2 Tail Calls

(a) Here is a definition for a modified summing procedure that sums up the elements of a list:

(define (sum lst fn)

(cond ((null? lst) 0)

(else (+ (fn (car lst)) (sum (cdr lst) fn)))))

Rewrite the function to be tail-recursive.

(b) Write the function power that raises x to the power of y so that it is tail-recursive.
(power 2 5) ---> 32

Try running this on your Scheme interpreter. Plug in some large numbers, and compare this tail-recursive
function and a non-tail-recursive counterpart. You will find that the tail-recursive version will be faster,
whereas the non-tail-recursive version may not even finish if it runs out of memory.

4


