
Solutions to CS 61A Challenge Problems:

Advanced Scheme
Other worksheets and solutions at https://alextseng.net/teaching/cs61a/

Alex Tseng

1 Functions and Lambda

(a) Write filter. filter takes in a list and another predicate function, and returns a list of only the items
that satisfy this predicate function.
(filter ’(1 2 3 4 5 6 7) (lambda (x) (= (modulo x 3) 0))) ---> (3 6)

(define (filter lst pred)

(cond ((null? lst) lst)

((pred (car lst)) (cons (car lst) (filter (cdr lst) pred)))

(else (filter (cdr lst) pred))))

In this function, as in many others, there are many choices as to what function you use to create lists.
Here, we use cons. append with appropriate lists would also work.

(b) Write map, which takes in a list and a function, and returns a new list with the same elements but with
the function applied to them.
(map ’(1 2 3 4 5 6 7) (lambda (x) (* x x))) ---> (1 4 9 16 25 36 49)

(define (map lst fn)

(cond ((null? lst) lst)

(else (cons (fn (car lst)) (map (cdr lst) fn)))))

Simple recursion!

(c) Write accumulate. accumulate is the Scheme version of reduce in Python. It takes in a list, a function,
and a seed. It condenses (or accumulates) the elements of the list using the function, where the starting
point is the seed.
(accumulate ’(1 2 3 4 5 6 7) (lambda (x y) (+ x y)) 0) ---> 28

(accumulate ’(1 2 3 4 5 6 7) (lambda (x y) (* x y)) 1) ---> 5040 ; 7!

(define (accumulate lst fn seed)

(cond ((null? lst) seed)

(else (accumulate (cdr lst) fn (fn seed (car lst))))))

Don’t worry about what direction we do the accumulating.

(d) Write the function compose, which takes in two functions f and g and evaluates to a new function that
is the composition f(g(.)). Assume f and g are single-argument functions.
((compose (lambda (x) (* x x)) (lambda (x) (+ x 2))) 4) ---> 36

(define (compose f g)

(lambda (x) (f (g x))))

This is a higher-order function in Scheme. We simply return a lambda function. Do not be fooled by
the presence of the lambda. Lambda functions are simply nameless functions in Scheme. You will see
later on that the define function is very closely related to lambda.

1



(e) Write the function safe-fn. safe-fn takes in a regular single-argument function and a predicate
function, and evaluates to a new function that is a safer version by checking the argument using the
predicate before evaluating.
((safe-fn sqrt (lambda (x) (and (number? x) (> x 0)))) 16) ---> 4

((safe-fn sqrt (lambda (x) (and (number? x) (> x 0)))) "not a number") ---> #f

((safe-fn sqrt (lambda (x) (and (number? x) (> x 0)))) -1) ---> #f

(define (safe-fn fn pred)

(lambda (x)

(cond ((pred x) (fn x))

(else #f))))

Another example of a higher-order function. This time, it’s a little more complicated, but the idea is
the same. If you get stuck, try writing it first in Python and translating it into Scheme.

(f) *Challenge* Write a function replicate that takes in a list and returns a new list with each element
replicated k times.
(replicate ’(1 2 3) 3) ---> (1 1 1 2 2 2 3 3 3)

(define (repl-one item k)

(cond ((= k 0) ’())

(else (cons item (repl-one item (- k 1))))))

(define (replicate lst k)

(cond ((null? lst) lst)

(else (append (repl-one (car lst) k) (replicate (cdr lst) k)))))

It would be extremely difficult to write this without a helper function. We start by writing repl-one

that simply takes one element and returns a list k copies of it. Then our replicate function becomes
much easier. We simply go through the list and replicate each item individually and append them all
together. Note that we must use append here, because we want to concatenate sublists together.

(g) Write a function remove-k that removes the kth element from a given list.
(remove-k ’(0 1 2 3 4 5) 4) ---> (0 1 2 3 5)

(define (remove-k lst k)

(cond ((= k 0) (cdr lst))

(else (cons (car lst) (remove-k (cdr lst) (- k 1))))))

While there are other ways to solve this problem, we use a clever trick to make it much more elegant.
Intuitively, we start of with k at the front of the list, and traverse down the list. Each time we go the
next pair, we decrement k. When we get down to k being 0, then we skip the current element and tack
on the rest of the list. Notice that if we start off with k being 0, we simply return the rest of the list
without the first element, as expected.

2



A run-length encoding is a way of decreasing the space required to store certain types of data. The
general idea of a run-length encoding is that in a lot of types of data, there are long sequences of
consecutive items that are the same (runs). For example, in strings, many characters in a row could be
the same. In images, there could be a consecutive sequence of many pixels of the same color (JPEGs use
this method). A run-length encoding compresses this data down by storing only 1 copy of an element
in a run, and the number of times it appears, instead of many copies of the same element. In these next
two problems, we will explore a way of performing run-length encoding and decoding on Scheme lists.

(h) Given a run-length encoding, write a function decode that turns an encoded list of elements and their
counts into the original list. The encoded list consists of the same elements, but where there is a run of
more than 1 of the same element in a row, they are condensed into a pair.
(define code ’((a . 4) (b . 2) c a (b . 3)))

(decode code) ---> (a a a a b b c a b b b)

Hint: There is a very easy way to write this function, using some of the functions you have already
written above.

(define (decode lst)

(cond ((null? lst) lst)

((pair? (car lst)) (append (replicate (list (car (car lst))) (cdr (car lst)))

(decode (cdr lst))))

(else (cons (car lst) (decode (cdr lst))))))

Despite the long lines of code, this function is very simple because of all the utility functions we have
already written. When we see a pair in the list, the first element is some item, and the second element
is the number of times it appears in that run. replicate is perfect for the job. We replicate that item
the appropriate number of times and append it to the result of decoding the rest of the list. If we see
a regular element, then it just appears by itself, and we simply use cons to attach that element to the
result of decoding the rest of the list.

(i) *Challenge* Write the corresponding encode function that turns a list of elements into a run-length
encoded list.
(encode ’(a b b b c d d e a)) ---> (a (b . 3) c (d . 2) e a)

(equal? (encode (decode code)) ---> #t)

Hint: It might be easier to start by writing a helper functions, where a run of 1 element is still encoded
as (x . 1) instead of just x, and fix it later using a function you have already written above.

(define (encode-helper lst item run)

(cond ((null? lst) (list (cons item run)))

((equal? item (car lst)) (encode-helper (cdr lst) item (+ run 1)))

(else (cons (cons item run) (encode-helper (cdr lst) (car lst) 1)))))

(define (encode lst)

(map (encode-helper (cdr lst) (car lst) 1)

(lambda (pair) (cond ((= (cdr pair) 1) (car pair))

(else pair)))))

This is a difficult problem. Almost all of the work being done is by encode-helper. Notice that
encode-helper has arguments that store the current item we are looking at, and how many we have
seen already. The basic logic is that every time we see another element in our list that matches item, we
just add 1 to run. If the first element of the list doesn’t match, then we have just ended a run. Then we
create a new pair with that information and recurse with a new item and reset run to 1. Our base case
is if we have nothing left in our list, then we return the last pair of the element and a run in a list by
itself. Our encode function calls this helper function by starting everything off correctly. It sets item

to the first element of the list, run to 1, and feeds it the rest of the list not including the first element
(we’ve already seen it and counted it). Notice that for the first example above, this would give us the
list, ((a . 1) (b . 3) (c . 1) (d . 2) (e . 1) (a . 1)). This is almost correct. The last

3



step is to use map and wherever we see a pair with a run-length 1, we simply replace it with the element
itself. The lambda function fed into map is where this decision is made.

2 Tail Calls

(a) Here is a definition for a modified summing procedure that sums up the elements of a list:

(define (sum lst fn)

(cond ((null? lst) 0)

(else (+ (fn (car lst)) (sum (cdr lst) fn)))))

Rewrite the function to be tail-recursive.

(define (sum-tail-helper lst fn result)

(cond ((null? lst) result)

(else (sum-tail-helper (cdr lst) fn (+ result (fn (car lst)))))))

(define (sum-tail lst fn)

(sum-tail-helper lst fn 0))

It is a common pattern to see tail-recursive functions being written with a helper function and a wrapper
function. Our limitation in the original function is that the + operator is outside of the recursive call,
and must hang around until the recursion completely backtracks. To avoid this, we use an argument in
the helper to store the result so far, and this carries over to all subsequent recursive calls.

(b) Write the function power that raises x to the power of y so that it is tail-recursive.
(power 2 5) ---> 32

(define (power-helper x y result)

(cond ((= y 0) result)

(else (power-helper x (- y 1) (* result x)))))

(define (power x y)

(power-helper x y 1))

This is fairly similar to sum-tail above. We use another argument in a helper function to store the
result so far. You might also try writing a tail-recursive version of power that uses fast exponentiation.
Recall, this cuts the time of exponentiation from Θ(y) to Θ(log y). With tail-recursion, this is made
even faster in Scheme.

Try running this on your Scheme interpreter. Plug in some large numbers, and compare this tail-
recursive function and a non-tail-recursive counterpart. You will find that the tail-recursive version will
be faster, whereas the non-tail-recursive version may not even finish if it runs out of memory.

4


