CS 61A Challenge Problems:

Basic Scheme
Solutions at https://alextseng.net/teaching/cs6la/
Alex Tseng

1 Constructing Pairs and Lists

For each of the following lines of code, determine what Scheme will print out and draw the corresponding
box-and-pointer diagram.

(define a (1 2 3))

(define b (4 5 6))

(cons a b) ; 1

(cons 10 20) ; 2

(cons ’(a b) ’(a)) ; 3

(cons (1list a b) (list a)) ; 4
(list a b) ; 5

(1ist (list (list a)) b) ; 6
(append a b) ; 7

(append (cons a ’foo) (list b)) ; 8

(append a b 42) ; 9

Make sure you understand the mechanisms of cons, list, and append, as they are the 3 main ways of
creating pairs and lists. Also make sure you understand car, cdr, and everything in between. Remember,
read the letters right to left: (caddr a) ---> 3. There can be up to 4 letters between the ¢ and r.



2 Functions on Lists

(a) Write a function last that takes in a list and returns the last element in the list.
(last (1 234 (566) 7)) -——> 7
(last (1 2 3 (4 5)) --—> (4 5))

(b) Write a function double that takes in a list and returns a list with every element duplicated. Assume
that every element in the list is a single token, and not another list.
(double (1 23 4)) ---> (11223344

(¢) *Challenge* You may be familiar with the function that reverses a shallow list. That is, if the list has
elements that are also lists, those inner lists are not reversed themselves. Write a function deep-reverse
that reverses all elements of the list, including sublists.

(deep-rev (1 2 (34 5) ((6)) 7 (89) 10)) --—> (10 (9 8) 7 ((6)) (5 4 3) 2 1)

(d) *Challenge* Write a function flatten that flattens a list, bringing all elements in sublists to the top
level.

(flatten ’(a b (c d) (((e)) £) (g (b (1) jk) 1)) ~——>(abcdefghijkl)



3 Iteration to Recursion in Scheme

(a) Write a function prime that tests if a number is prime. You may find the function mod useful, which is
the equivalent to the % operator to find the remainder in Python.
Hint: consider writing a helper function

(b) *Challenge* Write a function fibo that returns the nth Fibonacci number in ©(n) time (so no tree
recursion).



