Solutions to CS 61A Challenge Problems:

Basic Scheme
Other worksheets and solutions at https://alextseng.net/teaching/cs61la/
Alex Tseng

1 Constructing Pairs and Lists

For each of the following lines of code, determine what Scheme will print out and draw the corresponding
box-and-pointer diagram.
See last page for box and pointer diagrams

(define a ’(1 2 3))
(define b ’(4 5 6))

(cons a b) ; 1
((123) 45 6)

(cons 10 20) ; 2
(10 . 20)

(cons ’(a b) ’(a)) ; 3
((a b) a)

(cons (1ist a b) (list a)) ; 4
(((123) (4586)) (123))

(list a b) ; b
((123) (4 56))

(list (1list (list a)) b) ; 6
(1 23))) 4 586)

(append a b) ; 7
(1 23456)

(append (cons a ’foo) (list b)) ; 8
Error

(append a b 42) ; 9
(123456 . 42)

Make sure you understand the mechanisms of cons, list, and append, as they are the 3 main ways of
creating pairs and lists. Also make sure you understand car, cdr, and everything in between. Remember,
read the letters right to left: (caddr a) ---> 3. There can be up to 4 letters between the ¢ and r.

cons takes in exactly 2 arguments, and creates a single new pair with the first element being the first
argument and the second element being the second argument. It doesn’t matter if these arguments are
symbols or lists.

list takes in any number arguments and puts them into a new list. You can imagine that 1ist takes its
n arguments and creates a new set of n pairs pointing in a line (linked-list style), and then fills in the first
element of each pair with the arguments. Again, it doesn’t matter if these arguments are symbols or lists.
append takes at least 2 lists and concatenates them together. That is, it goes through the lists and makes
the last element of the ith list point to the first element of the 74 1th list. Notice that append must be given



lists. Scheme will complain otherwise. The exception is that the very last argument to append doesn’t have
to be a list. The mechanism is the same, but now the list is not well-formed, like in number 9.
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Functions on Lists

Write a function last that takes in a list and returns the last element in the list.
(last (1 234 (56) 7)) ——>7
(last ’(1 2 3 (4 B)) ——> (4 5))

(define (last 1lst)
(cond ((null? (cdr 1st)) (car 1st))
(else (last (cdr 1st)))))

This is fairly simple recursion. If we’re at the end of the list (the second element of the pair is null),
then we are done. Otherwise, we must go further down the list and call it on cdr of the list.

Write a function double that takes in a list and returns a list with every element duplicated. Assume
that every element in the list is a single token, and not another list.
(double ’(1 2 3 4)) ———> (11223344

(define (double 1lst)
(cond ((null? 1st) 1st)
(else (append (list (car 1lst) (car 1st)) (double (cdr 1st))))))

Again, this is simple recursion. We simply go through and duplicate the car of the list and put them
into a new list. Notice that we use 1ist to put the duplicates in a new list, and then we use append to
concatenate the result of the rest of the list.

*Challenge* You may be familiar with the function that reverses a shallow list. That is, if the list has
elements that are also lists, those inner lists are not reversed themselves. Write a function deep-reverse
that reverses all elements of the list, including sublists.

(deep-rev (1 2 (34 5) ((6)) 7 (8 9) 10)) ———> (10 (9 8) 7 ((6)) (54 3) 2 1)

(define (deep-rev lst)
(cond ((null? 1st) 1st)
((1ist? (car 1st)) (append (deep-rev (cdr 1st)) (list (deep-rev (car 1lst)))))
(else (append (deep-rev (cdr 1lst)) (list (car 1st))))))

This one has two recursive cases. If the first element is a list, then we must deep reverse that list before
appending it to the end of the result of deep reversing the rest of the list. Notice that we must wrap this
in a list call, as well. This is because append will concatenate the input lists, so if we were to forget
to wrap (deep-rev (car 1lst)) in another list, we would lose that level of nesting completely. In the
case that the first element is a simple token, then we simply need to append it to the end of the result
of deep reversing the rest of the list. Again, we need to wrap this first element in a list so append does
the right thing.

*Challenge* Write a function flatten that flattens a list, bringing all elements in sublists to the top
level.
(flatten *(a b (c d) (((e)) £f) (g (h (i) j k) 1)) ~——> (abcdefghijk1l)

(define (flatten 1st)
(cond ((null? 1st) 1st)
((list? (car 1st)) (append (flatten (car 1lst)) (flatten (cdr 1lst))))
(else (append (list (car 1st)) (flatten (cdr 1lst))))))
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This is a classic Scheme problem. Again, our two recursive cases are if the first element is a list or if it
is not. If the first element is not a list (else case), then we simply append the result of flattening the
rest of the list to a new list with the first element. We use append and put the first element in a list. In
the case that the first element was a list, we must flatten this first element, as well. Notice that flatten
returns a list, and we wish to bring everything to the top nesting level, so we don’t wrap the results of
either of these calls in lists before appending them together. We could have also used cons for this case:
(cons (car 1st) (flatten (cdr 1lst)). It may behoove you to run through an example.

Iteration to Recursion in Scheme

Write a function prime that tests if a number is prime. You may find the function mod useful, which is
the equivalent to the % operator to find the remainder in Python.
Hint: consider writing a helper function

(define (prime-helper num factor)
(cond ((= factor 1) #t)
((= (mod num factor) 0) #f)
(else (prime-helper num (- factor 1)))))

(define (prime? num)
(prime-helper num (- num 1)))

Scheme doesn’t have any iterators, like for or while like in Python and many other languages. So
everything must be naturally recursive. A common trick we use in Scheme is to write a helper function
whose argument stores some state. For example, we would normally use a variable to keep track of
numbers and check if they are factors. But since we cannot directly store them, we must keep them
around as arguments. So prime-helper will simply run through all possible factors and return whether
or not num is prime. We then write a wrapper function prime that calls our helper with the appropriate
starting values. This is a very common pattern in Scheme. There are other ways of solving this problem,
too.

*Challenge* Write a function fibo that returns the nth Fibonacci number in ©(n) time (so no tree
recursion).

(define (fibo-helper n prev curr)
(cond ((= n 0) curr)
(else (fibo-helper (- n 1) curr (+ prev curr)))))

(define (fibo n)
(fibo-helper n 0 1))

Again, we use a helper function to store state. Here, we keep track of our previous and current values
and increment them appropriately. In each subsequent level of recursion, previous becomes current, and
current becomes the sum of the two. We define fibo to call our helper function with the appropriate
starting values.



Note: For number 4, there are two copies of the list a shown for clarity’s sake. In reality, they are one
copy, so any arrows pointing to them really point to the same object in memory.
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