
CS 61A Challenge Problems:

Iterators, Iterables, and Generators (and Streams)
Solutions at https://alextseng.net/teaching/cs61a/

Alex Tseng

1 Iterators and Iterables

(a) Complete the following class PrimeIterator so that it correctly iterates through the prime numbers in
the interval [start, end) one by one. You may assume that the function is prime is already written
for you.

class PrimeIterator:

def __init__(self, start, end):

self.start = start

self.end = end

def __next__(self):

(b) If we wanted to use a PrimeIterator instance in a for loop or in the function list, then what method
do we need to add? Write this method.

(c) p = PrimeIterator(2, 15). Eventually what happens if we keep calling next on p?

(d) Complete the PrimeIterable class that is an iterable and has the same functionality as PrimeIterator.
This means that we can use it in a for loop, call list on it, etc.

class PrimeIterable:

def __init__(self, start, end):

self.start = start

self.end = end

def __getitem__(self, i):

Assume this is already implemented for you

1

(e) q = PrimeIterable(2, 15). What happens if keep calling next on q? What is the result of calling
list(q)?

(f) Implement the class Vowels that takes in a word and allows you to step through each of the vowels in
the word in order. Vowels is both an iterator and an iterable that also supports indexing.

import re

def get_vowels(word):

A bit of RegEx magic to isolate all the vowels of a word in order

return re.sub(r’[^aeiou]’, ’’, word)

class Vowels:

(g) What is the result of the following code?
list(Vowels("facetious"))

Vowels("aardvark")[3]

next(Vowels("sciatic"))

2 Generators

(a) Write the generator function randoms that can generate num random integers in the interval [low,
high).

(b) Write a generator expression that gives the same result as the function.

2

3 Streams

What is the 4th element in this stream? Assume 1-indexing.

(define (mystery foo)

(let ((bar (+ (* foo 3) 1)))

(cons-stream bar

(mystery bar))))

(mystery 3)

3

