CS 61A Challenge Problems:
 Midpoint Review
 Solutions at https://alextseng.net/teaching/cs61a/
 Alex Tseng

1 Recursion

(a) *Challenge* Define a function parens that takes in a positive integer n and returns the list of all possible nesting patterns of parentheses:
parens(2) ---> ["()()", "(())"]
parens(3) ---> ["() () ()", "()(())", "(())()", "(()))", "((()))"]
Order in the list doesn't matter, but be wary of repeats.
(b) *Challenge* Given a string s, write a function perms that returns a list of all the possible permutations of characters. You may assume all characters are unique:
perms("61a") ---> ["61a", "6a1", "16a", "a61", "1a6", "a16"]
Order in the list doesn't matter.
(c) *Challenge* A tarsier spies a delicious cricket at the top of a ladder with n rungs. Due to a tarsier's short arms and legs, it can only climb 1 or 2 rungs at a time. How many ways can the tarsier climb the ladder to retrieve its reward? Define a function climbs to determine the answer: climbs(4) ---> 5 (1111, 12, 21, 22)
(d) Recall Pascal's Triangle. Write a function pascal that takes in i,j and returns the entry of Pascal's Triangle in the ith row and jth entry in that row. i and j are both 0 -indexed. It may help to look up the precise definition of the triangle:

```
pascal(4, 0) ---> 1
pascal(4, 2) ---> 6
pascal(4, 3) ---> 4
pascal(5, 3) ---> 10
```


2 Mutable Data and Functions

(a) Draw the environment diagram of the following:

```
def butter(fly):
    cater = 20
    pillar = 10
    def chrysalis(mystery):
        nonlocal cater
        cater = mystery(cater)
        pillar = mystery(fly)
        return [cater, pillar]
    return chrysalis
pupa = butter(4)
a = pupa(lambda x: x / 2)
b = pupa(lambda x: x / 2)
bugs = list([a, b]) + list(a)
```

(b) *Challenge* Write a function to compute the nth Fibonacci number. The first time it is called on n, it should take $\Theta(n)$ time. All later calls to the function for the same n should take $\Theta(1)$ time. Hint: Use higher order functions and memoization.

3 Hierarchical Data Structures

As a reminder, here are the definitions of Link and Tree:

```
class Link:
    empty = ()
    def __init__(self, first, rest=empty):
        self.first = first
        self.rest = rest
    def __repr__(self):
        if self.rest is Link.empty:
            rest = ""
        else:
            rest = ", " + repr(self.rest)
        return "Link({0}{1})".format(self.first, rest)
class Tree:
    def __init__(self, entry, branches=()):
        self.entry = entry
        self.branches = branches
    def is_leaf(self):
        return len(self.branches) == 0
    def __repr__(self):
        if self.branches:
            return "Tree({0}, {1})".format(self.entry, repr(self.branches))
        else:
            return "Tree({0})".format(repr(self.entry))
```

(a) Write a function reverse_print that prints out the elements of the linked list in reverse order. Do not create new Links or modify the existing list.
(b) *Challenge* Write a function k_from_end that returns the kth element from the end of a linked list. A value of $k=0$ corresponds to the last element. Try your best to do this in $\Theta(n)$ time where n is the length of the list.

```
k_from_end(Link(1, Link(2, Link(3, Link(4)))), 2) ---> 2
```

(c) *Challenge* Write a function reverse_k that reverses every k elements of a linked list in place. Assume that the length of the list is a perfect multiple of k :
$\mathrm{x}=\operatorname{Link}(1, \operatorname{Link}(2, \operatorname{Link}(3, \operatorname{Link}(4, \operatorname{Link}(5, \operatorname{Link}(6, \operatorname{Link}(7, \operatorname{Link}(8, \operatorname{Link}(9)))))))))$ $\mathrm{y}=$ reverse_k(x, 3)
y ---> Link(3, Link(2, Link(1, Link(6, $\operatorname{Link(5,~Link(4,~Link(9,~Link(8,~Link~(7)))))))))~}$
Note that since reverse k changes the first link, it will return a pointer to the new head of the list. This means that x will no longer point to the head of the list. Instead, x will still be pointing to the 1 .
(d) A binary search tree is a tree with two very special properties:

1. Each subtree (including the main one) has exactly 0 or 2 children.
2. For every subtree t, every element in t 's left branch is smaller than t.entry, and every element in t's right branch is larger than t. entry.

Here is an example of a valid binary search tree. This example is particularly balanced, but it is not necessary that the depth is the same on each side.

Write a function is_bst that takes in a tree and returns whether or not it is a valid binary search tree. Hint: It may be helpful to keep track of the minimum and maximum allowable values for a subtree.

