
CS 61A Challenge Problems:

Midpoint Review
Solutions at https://alextseng.net/teaching/cs61a/

Alex Tseng

1 Recursion

(a) *Challenge* Define a function parens that takes in a positive integer n and returns the list of all possible
nesting patterns of parentheses:
parens(2) ---> ["()()", "(())"]

parens(3) ---> ["()()()", "()(())", "(())()", "(()())", "((()))"]

Order in the list doesn’t matter, but be wary of repeats.

(b) *Challenge* Given a string s, write a function perms that returns a list of all the possible permutations
of characters. You may assume all characters are unique:
perms("61a") ---> ["61a", "6a1", "16a", "a61", "1a6", "a16"]

Order in the list doesn’t matter.

(c) *Challenge* A tarsier spies a delicious cricket at the top of a ladder with n rungs. Due to a tarsier’s
short arms and legs, it can only climb 1 or 2 rungs at a time. How many ways can the tarsier climb the
ladder to retrieve its reward? Define a function climbs to determine the answer:
climbs(4) ---> 5 (1111, 12, 21, 22)

(d) Recall Pascal’s Triangle. Write a function pascal that takes in i,j and returns the entry of Pascal’s
Triangle in the ith row and jth entry in that row. i and j are both 0-indexed. It may help to look up
the precise definition of the triangle:

1



pascal(4, 0) ---> 1

pascal(4, 2) ---> 6

pascal(4, 3) ---> 4

pascal(5, 3) ---> 10

2 Mutable Data and Functions

(a) Draw the environment diagram of the following:

def butter(fly):

cater = 20

pillar = 10

def chrysalis(mystery):

nonlocal cater

cater = mystery(cater)

pillar = mystery(fly)

return [cater, pillar]

return chrysalis

pupa = butter(4)

a = pupa(lambda x: x / 2)

b = pupa(lambda x: x / 2)

bugs = list([a, b]) + list(a)

(b) *Challenge* Write a function to compute the nth Fibonacci number. The first time it is called on n, it
should take Θ(n) time. All later calls to the function for the same n should take Θ(1) time.
Hint: Use higher order functions and memoization.

2



3 Hierarchical Data Structures

As a reminder, here are the definitions of Link and Tree:

class Link:

empty = ()

def __init__(self, first, rest=empty):

self.first = first

self.rest = rest

def __repr__(self):

if self.rest is Link.empty:

rest = ""

else:

rest = ", " + repr(self.rest)

return "Link({0}{1})".format(self.first, rest)

class Tree:

def __init__(self, entry, branches=()):

self.entry = entry

self.branches = branches

def is_leaf(self):

return len(self.branches) == 0

def __repr__(self):

if self.branches:

return "Tree({0}, {1})".format(self.entry, repr(self.branches))

else:

return "Tree({0})".format(repr(self.entry))

(a) Write a function reverse print that prints out the elements of the linked list in reverse order. Do not
create new Links or modify the existing list.

(b) *Challenge* Write a function k from end that returns the kth element from the end of a linked list. A
value of k = 0 corresponds to the last element. Try your best to do this in Θ(n) time where n is the
length of the list.
k from end(Link(1, Link(2, Link(3, Link(4)))), 2) ---> 2

3



(c) *Challenge* Write a function reverse k that reverses every k elements of a linked list in place. Assume
that the length of the list is a perfect multiple of k:
x = Link(1, Link(2, Link(3, Link(4, Link(5, Link(6, Link(7, Link(8, Link(9)))))))))

y = reverse k(x, 3)

y ---> Link(3, Link(2, Link(1, Link(6, Link(5, Link(4, Link(9, Link(8, Link(7)))))))))

Note that since reverse k changes the first link, it will return a pointer to the new head of the list.
This means that x will no longer point to the head of the list. Instead, x will still be pointing to the 1.

(d) A binary search tree is a tree with two very special properties:

1. Each subtree (including the main one) has exactly 0 or 2 children.

2. For every subtree t, every element in t’s left branch is smaller than t.entry, and every element in
t’s right branch is larger than t.entry.

Here is an example of a valid binary search tree. This example is particularly balanced, but it is not
necessary that the depth is the same on each side.

Write a function is bst that takes in a tree and returns whether or not it is a valid binary search tree.
Hint: It may be helpful to keep track of the minimum and maximum allowable values for a subtree.

4


