CS 61A Challenge Problems:
 Mutable Data
 Solutions at https://alextseng.net/teaching/cs61a/
 Alex Tseng

1 Environment Diagrams of Lists

Draw the environment diagrams of the following. Assume execution is all in the global scope.
(a)

```
s = [[1, 2], [3, 4]]
t = s[1]
```

(b)
$s=[[1,2],[3,4]]$
$\mathrm{t}=\mathrm{s}$
t[1][1] = list(s)
(c)

```
s = [[1, 2]]
t = list([s, s])
t[1] = list(s)
```


2 Linked Lists

(a) Create a linked list that includes a loop. That is, if we were to continuously call rest on the list, we would never reach "empty".
(b) *Challenge* Write a function has_loop(s) that checks if s has a loop. Pseudocode is fine, but make sure you can translate it into native Python.

3 List and Dictionary Comprehensions

(a) Using a single (possibly nested) list comprehension, compute the set of prime numbers from 0 to 99 (inclusive). Your list comprehension should return a list of lists, where the ith list is the list of prime numbers in $[i * 10,(i * 10)+9]$. The result should look something like: $[[2,3,5,7],[11,13,17,19], \ldots]$
You may assume that there is a function is_prime(x) that returns True if x is prime and False otherwise.
(b) Use a single dictionary comprehension that maps each element of a list items to the number of times it appears in items, but only if it appears more than 2 times.
If items is: ["A", "A", "A", "B", "B", "C", "C", "C", "C", "D"], then the result will be: \{"A": 3, "C": 4\}
(c) Use a single list comprehension to compute the set of right triangles with integer side lengths no more than 30 (each side must be an integer ≤ 30). A triangle is defined by its three sides. Your list comprehension should return a list of tuples, each with the lengths of the three sides:
$[(3,4,5),(5,12,13), \ldots]$
Hint: all right triangles follow the Pythagorean theorem.

