
CS 61A Challenge Problems:

Object Oriented Programming
Solutions at https://alextseng.net/teaching/cs61a/

Alex Tseng

1 Defining a Class

We define a new class to create objects that represent high school students. A basic high school student has
a name, a grade, and a favorite subject.

(a) Fill in the functions below to complete the class definition so that the doctests pass.

class Student:

students_enrolled = 0

student_years = {}

def __init__():

def set_favorite_subject():

def students_in_grade():

>>> tiffany = Student("Tiffany", 9) # a student by default has no favorite subject

>>> tiffany.name

"Tiffany"

>>> tiffany.grade

9

>>> mike = Student("Michael", 11)

>>> mike.set_favorite_subject("Biology")

>>> mike.fave_subject

"Biology"

>>> tiffany.fave_subject

"No favorite"

>>> Student.students_in_grade(9)

1

>>> Student.students_in_grade(10)

0

>>> zack = Student("Zackary", 11)

>>> Student.students_in_grade(11)

2

1

>>> Student.students_enrolled

3

(b) What would happen if we called mike.students enrolled?

(c) What would happen if we called Student.student years[9]?

(d) High school students also get crushes on each other. A student can have a crush on any other student
(or none at all). Many students may have a crush on the same person, but a student can only have a
crush on one person. Write a bound method develop crush that stores a student’s crush as an instance
attribute crush. By default, a student has no crush (crush is None). What change would you need to
make to init ?

(e) *Challenge* Now we also wish for the class to know how popular certain students are. That is, we want
to know how many people have crushes on each student. You will need a class variable to store how
many crushes each person is the receiver of. You may also need to alter init and develop crush.

(f) Now that you’ve implemented (e), write a class method crush on that is able to find the number of
people who have a crush on some student, by name. For example, if tiffany and zack both have a
crush on mike, then Student.crush on("Michael") should return 2. What happens if we call it on a
student that doesn’t exist?

2 Special Methods

Python actually has many special methods, most of which are used quite rarely. We will explore the uses of
several of the more useful ones. Consider the following basic definition of molecules:

class Molecule:

def __init__(self, formula, name, weight):

self.formula = formula

2

self.name = name

self.weight = weight

(a) Two molecules are equivalent if and only if they have the same name (we can’t use the formula because
constitutional isomers have the same formula but can have very different structures!). Add a bound
method so that the following doctests pass. Recall that eq (self, other) returns a boolean allows
equality testing using ==.

>>> ethanol = Molecule("C2H6O", "Ethanol", 46.07)

>>> alcohol = Molecule("C2H6O", "Ethanol", 46.07)

>>> dimethyl_ether = Molecule("C2H6O", "Dimethyl Ether", 46.07)

>>> ethanol == alcohol

True

>>> ethanol == dimethyl_ether

False

(b) We can also compare molecules using molecular weights with < and >. Hint: lt and gt work just
the same as eq .

>>> ammonia = Molecule("NH3", "Ammonia", 17.03)

>>> ammonia < ethanol

True

>>> ammonia > dimethyl_ether

False

(c) Consider the following definitions of str and repr . What would Python print?

def __str__(self):

return self.formula + ": " + self.name

def __repr__(self):

return "Molecule(’{0}’, ’{1}’, {2})".format(self.formula, self.name, self.weight)

>>> print(ammonia)

>>> ethanol

>>> str(alcohol)

>>> repr(ammonia)

>>> eval(repr(ethanol)) # eval evaluates a string as native Python

>>> print(repr(ethanol))

3

