Solutions to CS 61A Challenge Problems:
Object Oriented Programming

Other worksheets and solutions at https://alextseng.net/teaching/cs61la/
Alex Tseng

1 Defining a Class

We define a new class to create objects that represent high school students. A basic high school student has
a name, a grade, and a favorite subject.

(a) Fill in the functions below to complete the class definition so that the doctests pass.

class Student:
students_enrolled = 0
student_years = {}
def __init__(self, name, grade):
self.name = name
self.grade = grade
self.fave_subject = "No favorite"
Student.students_enrolled += 1
if grade in Student.student_years:
Student.student_years[grade] += 1
else:
Student.student_years[grade] = 1

def set_favorite_subject(self, subject):
self.fave_subject = subject

def students_in_grade(grade):
return Student.student_years[grade]

>>> tiffany = Student("Tiffany", 9) # a student by default has no favorite subject
>>> tiffany.name

"Tiffany"

>>> tiffany.grade

9

>>> mike = Student("Michael", 11)

>>> mike.set_favorite_subject("Biology")
>>> mike.fave_subject

"Biology"

>>> tiffany.fave_subject

"No favorite"

>>> Student.students_in_grade(9)
1
>>> Student.students_in_grade(10)
0

>>> zack = Student("Zackary", 11)
>>> Student.students_in_grade(11)

>>> Student.students_enrolled
3

Within the __init__ function, we set the name and grade of each student to be instance variable, so we
must use self. When referencing a class variable such as student_years, we must use the dot notation
starting with the class name, Student. This is because class variables are shared across all instances,
and you must tell Python that you mean to reference a class variable and not a local variable (this works
a little bit like the nonlocal statement). Whenever we create a new student, we also increment the
number of students that are enrolled, and add 1 to the correct grade in the student years dictionary.
Notice the if/else: we need to make sure that the grade exists in the dictionary before incrementing it!
What would happen if we tried to increment the grade and it were not in the dictionary? We would get
a KeyError. If we’d like, we can add a test to check if the grade is in the dictionary first, or use the get
function.

Notice that in students_in_grade, there is no self in the function declaration. This is because it is a

class function, not a bound instance method. This is meant to be called as Student.students_in_grade (x).

What would happen if we called mike.students_enrolled?

We would get the correct answer, although this is technically incorrectly used. Recall that mike is an
instance variable, so it inherits all of its class variables. However, this could also be a violation of a data
abstraction barrier, because it is not meant to be used this way. This variable is meant to be a shared
class variable, not an individual instance variable. It is possible to make this call return the wrong
answer by explicitly setting another instance variable: self.students_enrolled = "foo". If this were
the case, we would get "foo" instead of the total number of enrolled students, since an instance variable
overwrites a class variable if you use the notation instance.attribute.

What would happen if we called Student.student_years[9]7

We would get the correct answer. However, this is a major violation of a data abstraction barrier.
We cannot assume that the student years are stored as a dictionary. Because a class function exists
to retrieve the student years, it is clear that the user is meant to use this function instead of directly
referencing the dictionary. Because this violates a DAB, even though this call works now, it may easily
fail in the future if we decide to change some of the inner implementations.

For example, since there are only 4 grades in high school, we can decide to store student_years as a
list of 4 items instead, so that student_years[0] is the number of freshman students. Then we could
easily change the corresponding function students_in_grade, so that it would still work correctly. Then
all users that are respecting the DAB will still have correct code. But a user that directly references
student_years will get an IndexError for trying to get the 9th element from a 4-element list. Always
respect data abstraction barriers.

High school students also get crushes on each other. A student can have a crush on any other student
(or none at all). Many students may have a crush on the same person, but a student can only have a
crush on one person. Write a bound method develop_crush that stores a student’s crush as an instance
attribute crush. By default, a student has no crush (crush is None). What change would you need to
make to __init__?7

def __init__(self, name, grade):
self.crush = None # Add this line

def develop_crush(self, crush):
self.crush = crush

Notice that we must edit __init__ so that the default crush is None.

*Challenge™ Now we also wish for the class to know how popular certain students are. That is, we want
to know how many people have crushes on each student. You will need a class variable to store how
many crushes each person is the receiver of. You may also need to alter __init__ and develop_crush.

crushes = {} # Dictionary holding crushes, a class variable
def __init__(self, name, grade):

self.crush = None
Student.crushes[name] = 0

def develop_crush(self, crush):
self.crush = crush
Student.crushes[crush] += 1

This question is more challenging because you have the freedom to choose how you wish to implement
this functionality. If you did not look at the question in (f), you would not even know why storing
the crushes would be useful. This problem boils down to OOP design, or having the foresight to make
conscientious and smart decisions on how you implement objects. There are multiple solutions as to
what data structure you use to store the crushes, and how you retrieve them, but the easiest is probably
with a dictionary. Note that we automatically set the crushes on any student to be 0 in this dictionary
as soon as it is initialized. This means we don’t have to do the if/else check like before whenever we
develop a crush.

Notice that when we develop a crush, not only do we set the crush attribute to a student who is developing
the crush, but we also increment the dictionary crushes appropriately.

(f) Now that you've implemented (e), write a class method crushes_on that is able to find the number of
people who have a crush on some student, by name. For example, if tiffany and zack both have a
crush on mike, then Student.crushes_on("Michael") should return 2. What happens if we call it on
a student that doesn’t exist?

def crushes_on(student):
return Student.crushes[student]

Again, notice the lack of self because this is a class function, not a bound method. We reference the
class variable crushes, which is a dictionary. Because whenever a student is initialized, we put their
name into the dictionary, we do not need to check whether or not student is in the dictionary already.
But this also means that if we call crushes_on on a student that doesn’t exist, we will get a KeyError.

2 Special Methods

Python actually has many special methods, most of which are used quite rarely. We will explore the uses of
several of the more useful ones. Consider the following basic definition of molecules:

class Molecule:
def __init__(self, formula, name, weight):
self.formula = formula
self.name = name
self.weight = weight

(a) Two molecules are equivalent if and only if they have the same name (we can’t use the formula because
constitutional isomers have the same formula but can have very different structures!). Add a bound
method so that the following doctests pass. Recall that __eq__(self, other) returns a boolean and
allows equality testing using ==.

>>> ethanol = Molecule("C2H60", "Ethanol", 46.07)
>>> alcohol = Molecule("C2H60", "Ethanol", 46.07)
>>> dimethyl_ether = Molecule("C2H60", "Dimethyl Ether", 46.07)

>>> ethanol == alcohol

True

>>> ethanol == dimethyl_ether
False

def __eq__(self, other):
return self.name == other.name

We can also compare molecules using molecular weights with < and >. Hint: __1t__ and __gt__ work just
the same as __eq__.

>>> ammonia = Molecule("NH3", "Ammonia", 17.03)
>>> ammonia < ethanol
True

>>> ammonia > dimethyl_ether
False

def __1t__(self, other):

return self.weight < other.weight
def __gt__(self, other):

return self.weight > other.weight

Consider the following definitions of __str__ and __repr__. What would Python print?

def __str__(self):
return self.formula + ": " + self.name
def __repr__(self):
return "Molecule(’0’, ’1’, 2)".format(self.formula, self.name, self.weight)

>>> print (ammonia)

NH3: Ammonia

>>> ethanol

Molecule(’C2H60’, ’Ethanol’, 46.07)
>>> str(alcohol)

’C2H60: Ethanol’

>>> repr(ammonia)

"Molecule(’NH3’, ’Ammonia’, 17.03)"
>>> eval(repr(ethanol)) # eval evaluates a string as native Python
Molecule(’C2H60’, ’Ethanol’, 46.07)
>>> print (repr(ethanol))
Molecule(’C2H60’, ’Ethanol’, 46.07)

You may be confused about the purpose of str vs. repr. str is used to display the object in a human-
readable format. It should be easy to inspect and see the important attributes. Printing an object
uses the str string. repr also returns a string, but this string is intended to be unambiguous and
comprehensive. It is more useful in debugging. Oftentimes, the string that repr returns can be directly
evaluated in producing the exact same object. When you directly query Python for the value of an
object (like by just typing ethanol), you get the repr string value.

Notice that when you call str or repr explicitly on an object, Python displays the string with quotes.
This is because those functions return strings, so they will be displayed in quotes, as normal. However,
when you print or directly evaluate an object, the str string or repr string (respectively) are displayed
without quotes. This is a special behavior of printing and direct evaluation. In general, when you print
a string, the outside quotes are removed.

