CS 70 Challenge Problems:

Countability and Counting
Solutions at https://alextseng.net/teaching/cs70/
Alex Tseng

1 Finiteness, Countable Infinity, Uncountable Infinity

Classify the following sets as finite, countably infinite, or uncountably infinite. Give a short justification.
(a) Set of all prime numbers.
(b) Set of all functions from $\{0,1\}$ to \mathbb{N}.
(c) Set of all functions from \mathbb{N} to $\{0,1\}$.
(d) Set of all possible colors that can be encoded by standard HTML RGB (Each color is a 3 -tuple of values from 00 to FF).
(e) Set of all possible colors that we can see outside in the natural world.

2 Countability

(a) Prove that the Cartesian product of any (finite) number of countable sets is countable.
(b) Consider a perfectly balanced binary tree of infinite depth. How many leaves are there?
(c) Consider a square with side length 1. Are there more points inside the square than on one side of the square? Formally justify your response.

3 Counting

(a) How many non-decreasing sequences of k numbers are there if all the numbers are drawn (repetition allowed) from the set $\{1, \ldots, n\}$? For example, one such sequence is $\{1,3,3,6,9\}$ if $n=9$ and $k=5$.
(b) How many ways are there to put n distinct keys on a keyring?
(c) How many ways are there to put n distinct keys on a keyring, where exactly two of those keys cannot be right next to each other? Assume $n \geq 4$
(d) *Challenge* How many ways are there to arrange n elements, where k of those elements can't be adjacent to each other? For example, for $n=9, k=3$, this is the number of anagrams of "COMPUTERS", where no two vowels are adjacent. You may assume this is always possible ($k \leq\left\lceil\frac{n}{2}\right\rceil$).

