CS 70 Challenge Problems:
 Expectation, Variance, and Bounds

Solutions at https://alextseng.net/teaching/cs70/
Alex Tseng

1 Expectation

(a) Short tandem repeats (or STRs) occur in some segments of DNA. They consist of very short sequences that are repeated usually around 20-30 times. Consider a strand of DNA with n base pairs, where each base could be $\mathbf{A}, \mathbf{C}, \mathbf{G}$, or \mathbf{T}, randomly and independently. We are interested in the STR AG, so we are looking for segments of DNA that look like AGAGAG. This segment would have 3 repeats. What is the probability that you have at least r repeats starting at position p ? Assume that all $2 r$ bases would fit in the n base pairs starting at p.
(b) Continuing from the above part, what is the expected number of positions where a run of at least r repeats could start?
(c) You draw a random number from the set $\{1, \ldots, 100\}$, and then another number from the set $\{1, \ldots, 50\}$. What is the expectation of the sum of the numbers? What is the expectation of the product?
(d) *Challenge* Suppose you have chips numbered 1 to k in a bag, and you draw 2 from the bag randomly, with replacement. Let A be the first number you drew, and B be the second number you drew. What is $\mathrm{E}[\max \{A, B\}]$? What is $\mathrm{E}[\min \{A, B\}]$. Show that $\mathrm{E}[\max \{A, B\}]+\mathrm{E}[\min \{A, B\}]=\mathrm{E}[A]+\mathrm{E}[B]$ without appealing to the linearity of expectations.
Hint: Start with the definition of expected value. You will need to be a little clever with the algebra.

2 Variance

(a) Imagine we roll a standard 6 -sided die 100 times, and add up the resulting values. What is the variance of this distribution?
(b) Prove or give a counterexample: if X and Y are independent, then $\operatorname{Var}[X-Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]$.

3 Bounds

(a) If the national IQ average is 100 , and $\sigma=10$ (recall σ is standard deviation), what is the probability of finding someone with an IQ of 300 or more? Give the tightest bound you can.
(b) Consider a distribution X with $\mu=13, \sigma=5$. We know that X never exceeds 17 . Is it possible that $P(X \leq 1)>\frac{1}{4}$?

