CS 70 Challenge Problems:

Graphs, Trees, and Hypercubes
Solutions at https://alextseng.net/teaching/cs70/
Alex Tseng

1 Trees

(a) Prove or give a counterexample: a tree must have some vertex of degree 1 .

2 Hypercubes

(a) We define the following function:
$s(0)=1$
$s(n)=2^{n-1}(s(n-1))^{2}$
Prove that an n-dimensional hypercube has at least $s(n)$ spanning trees.
Note that a spanning tree of graph G is a subgraph that is a tree, and that connects all vertices of G.
(b) Is the bound in the question above a tight bound? That is, is it possible that an n-dimensional hypercube has more than $s(n)$ spanning trees?

3 General Graphs

(a) Let G be an undirected graph with $n \geq 2$ vertices. Every vertex in G has an even degree, except for the vertices u and v, which have odd degrees. Prove or give a counterexample: there must be a path between u and v.
(b) For some graph G, the graph \bar{G} (G-complement) has all of the same vertices, but has the opposite edges. That is, if an edge (u, v) exists in G, then it does not exist in \bar{G}, and if the edge does not exist in G,
then it does exist in \bar{G}. Prove that for any graph G, either G is connected or \bar{G} is connected. You may assume that the graph is undirected.
(c) *Challenge* Prove that a complete undirected graph on n vertices (assume n is even) can be partitioned into $\frac{n}{2}$ edge-disjoint spanning trees. That is, we can find $\frac{n}{2}$ different spanning trees where no edge is ever used twice.
(d) *Challenge* Given a tournament H of n vertices, show that there exists some node that is reachable from every other node on a path that is at most length 2 . That is, we can identify some vertex x in H where if we start on any other vertex in H, we can travel to x by traversing at most 2 edges.
Recall that a tournament is a directed graph where every pair of nodes u and v are connected by either an edge (u, v) or (v, u), but not both.

