CS 70 Challenge Problems:
 Modular Arithmetic and Polynomials

Solutions at https://alextseng.net/teaching/cs70/
Alex Tseng

1 Modular Arithmetic

(a) Let p be a prime number $(p>2)$. Recall that a perfect square y is such that there exists an integer x where $x^{2}=y$. With a modulus, a perfect square y is such that there exists an integer x where $x^{2} \equiv y$ $(\bmod p)$. Then that makes x the square root of y. Prove that for any $a \in\{1,2, \ldots, p-1\}, a$ has either 0 or 2 distinct square roots $(\bmod p)$.
(b) Prove that there are exactly $\frac{p+1}{2}$ perfect squares $(\bmod p)$.
(c) *Challenge* Prove that there are at least $\frac{p}{3}$ perfect cubes $(\bmod p)$.
(d) *Challenge* Digit the cybird has sent a coded message with Motherboard access codes using RSA to Inez, Jackie, and Matt. He sends them each a copy of the same message. Inez, Jackie, and Matt each have their own set of public keys: $\left(N_{I}, e_{I}\right),\left(N_{J}, e_{J}\right),\left(N_{M}, e_{M}\right)$. It turns out that all three of them have selected the same encryption exponent $e_{I}=e_{J}=e_{M}=3$. Additionally, Digit is quite terse in his message m, so that it is smaller than each of the public key moduli: $m<N_{I}, N_{J}, N_{M}$. Hacker has intercepted all three encrypted messages E_{I}, E_{J}, E_{M}, and wishes to decipher the access codes. Show how he can do this efficiently (without factoring the public keys).

2 Polynomials

(a) Find a polynomial of lowest degree that satisfies the following congruences:
$P(0) \equiv 4(\bmod 7)$
$P(2) \equiv 5(\bmod 7)$
$P(4) \equiv 0(\bmod 7)$
(b) Consider a function $d(n)$, which takes in a natural number n (in base 10), cubes all of the digits, and adds them up. For example, $d(24)=2^{3}+4^{3}=8+64=72$. Prove that $d(n)=n(\bmod 3)$ for all $n \in \mathbb{N}$.
(c) The engineering team of m people at Quince is about to release their newest model of qPhones. In order to guard against any overly-excited engineers from prematurely releasing the qPhone before the agreed-upon release date, the team decides lock up all of the qPhones in a safe with a secret code. Only the entire engineering team together should be able to open the safe. However, it has been suspected that one of the engineers is really a corporate spy, whose mission is to delay-or even cancel-the release of the qPhone. Devise a mechanism so that the engineering team can protect against premature-releases, while still being able to open the safe on time, even in the presence of a spy.

