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1 Modular Arithmetic

(a) Let p be a prime number (p > 2). Recall that a perfect square y is such that there exists an integer x
where x2 = y. With a modulus, a perfect square y is such that there exists an integer x where x2 ≡ y
(mod p). Then that makes x the square root of y. Prove that for any a ∈ {1, 2, ..., p− 1}, a has either 0
or 2 distinct square roots (mod p).
Consider if we find a single square root r for a. That is, we find that r2 ≡ a (mod p). Then it must be
that −r is also a square root of a. Furthermore, r 6= −r (mod p). This is because p must be odd (recall,
p is a prime larger than 2). Therefore, we are guaranteed that if there exists a square root of a, then
there must be at least 2 square roots.
Now we prove that there can only be 2 square roots. Let us assume for contradiction that in addition
to ±r, we find ±s are also square roots of a, where |r| 6= |s| (mod p). Then r2 ≡ s2 ≡ a (mod p), or
r2 − s2 ≡ 0 (mod p). Factoring, we get that (r + s)(r − s) ≡ 0 (mod p). Then either r + s ≡ 0 (mod
p) or r − s ≡ 0 (mod p). This implies that |r| = |s|—contradiction. Therefore, a can only have 0 or 2
square roots (mod p).

(b) Prove that there are exactly p+1
2 perfect squares (mod p).

We use the proposition from part (a). Note that if we square each possible number in mod p except 0
({1, ..., p − 1}), we get a perfect square each time. This yields all the possible perfect squares. Notice
that we know for sure that all of these perfect squares have square roots, because we constructed them
by ourselves. By part (a), we know that each one has two square roots. Within our range of p − 1
numbers that we squared, each perfect square has two distinct square roots, therefore they must overlap.
That is, two of the numbers that we square must yield the same perfect square. This means that there
can only be p−1

2 distinct perfect squares possible. We also notice that 02 ≡ 0 (mod p), so that gives one

more perfect square. Thus, there are p+1
2 perfect square (mod p).

(c) *Challenge* Prove that there are at least p
3 perfect cubes (mod p).

Finding a cube root of a (mod p) is equivalently solving the equation x3 − a ≡ 0 (mod p). This cubic
polynomial we know can have at most 3 roots. Therefore, each perfect cube can have at most 3 cube
roots. Using the same logic as above in part (b), we realize that in our limited range of p values to cube,
no cube can appear more than 3 times. Then there are at least p

3 cubes.
We could have also used this polynomial roots approach for part (b), but since we needed an exact
number of perfect squares, we would have needed to show that any quadratic polynomial we came up
with would have exactly 2 roots.

(d) *Challenge* Digit the cybird has sent a coded message with Motherboard access codes using RSA to
Inez, Jackie, and Matt. He sends them each a copy of the same message. Inez, Jackie, and Matt each
have their own set of public keys: (NI , eI), (NJ , eJ), (NM , eM ). It turns out that all three of them have
selected the same encryption exponent eI = eJ = eM = 3. Additionally, Digit is quite terse in his
message m, so that it is smaller than each of the public key moduli: m < NI , NJ , NM . Hacker has
intercepted all three encrypted messages EI , EJ , EM , and wishes to decipher the access codes. Show
how he can do this efficiently (without factoring the public keys).
If the secret message is m, than Hacker has intercepted m3 for different 3 different moduli: NI , NJ , and
NM . Thus, he can write the following congruences:
m3 ≡ EI (mod NI)
m3 ≡ EJ (mod NJ)
m3 ≡ EM (mod NM )
This system of congruences can be solved easily using the Chinese Remainder Theorem. Let this solution
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be x. That is, x ≡ m3 (mod NINJNM ). Because m < NI , NJ , NM , it must be that m3 < NINJNM .
Thus, taking (mod NINJNM ) of m3 will not truncate this value at all. Then x = m3 as a raw integer,
not in any modulus. Taking cube roots of an integer is easy (without any modulus).

2 Polynomials

(a) Find a polynomial of lowest degree that satisfies the following congruences:
P (0) ≡ 4 (mod 7)
P (2) ≡ 5 (mod 7)
P (4) ≡ 0 (mod 7)
This is mechanical LaGrange Interpolation.
∆0 = (8)−1(x− 2)(x− 4)
∆2 = (−4)−1x(x− 4)
∆4 = (8)−1x(x − 2) Don’t let the 0 value scare you. If you look ahead, you won’t actually need to
calculate ∆4 at all.
Putting it all together, we get P (x) = 4∆0 + 5∆2 + 0∆4. Solving, you should get P (x) = x2 + 2x + 4.

(b) Consider a function d(n), which takes in a natural number n (in base 10), cubes all of the digits, and
adds them up. For example, d(24) = 23 + 43 = 8 + 64 = 72. Prove that d(n) = n (mod 3) for all n ∈ N.
Given any n, let the decimal representation be akak−1...a1a0. That is, n = ak10k + ak−110k−1 + ... +
a110 + a0. Then d(n) ≡ a3k + a3k−1 + ...+ a31 + a30 (mod 3). By Fermat’s Little Theorem, since 3 is prime,
anything cubed (mod 3) is itself. Then d(n) ≡ ak +ak−1 + ...+a1 +a0. Now notice that 10 ≡ 1 (mod 3),
so multiplying anything by 10 would be inconsequential. Similarly, multiply anything by any positive
power of 10 would also be okay. Then we can write d(n) ≡ ak10k +ak−110k−1 + ...+a110 +a0 = n (mod
3).

(c) The engineering team of m people at Quince is about to release their newest model of qPhones. In
order to guard against any overly-excited engineers from prematurely releasing the qPhone before the
agreed-upon release date, the team decides lock up all of the qPhones in a safe with a secret code. Only
the entire engineering team together should be able to open the safe. However, it has been suspected
that one of the engineers is really a corporate spy, whose mission is to delay—or even cancel—the release
of the qPhone. Devise a mechanism so that the engineering team can protect against premature-releases,
while still being able to open the safe on time, even in the presence of a spy.
We use a secret sharing polynomial. This problem is an exact manifestation of general error correcting
codes. Recall that in general, if we want n points to interpolate a polynomial of degree n−1, if k of those
points are errors, then we need 2k additional points. In the context of this problem, we have m points,
where one of them could be erroneous. This means we need 2 points set aside just for error-correcting
purposes. Thus, we have m− 2 points left, making our polynomial degree m− 3.
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