CS 70 Challenge Problems:
 Proof Techniques
 Solutions at https://alextseng.net/teaching/cs70/
 Alex Tseng

1 Proofs

Prove the following propositions using a direct proof, proof by contradiction, contraposition, or a proof by cases.
(a) $(\forall x, y \in \mathbb{Z}) 6 \nmid x y \Rightarrow(6 \nmid x \wedge 6 \nmid y)$

In plain English: For all integers x and y, if $x y$ is not divisible by 6 , then neither x nor y are divisible by 6 .
(b) Every integer that is a perfect cube is either a multiple of 9,1 more than a multiple of 9 , or 1 less than a multiple of 9 .
(c) The difference between a rational number and an irrational number is irrational.
(d) ${ }^{*}$ Challenge ${ }^{*} \sqrt{2}$ is irrational.

2 Induction

(a) Assume that $P(x) \Rightarrow P(x+2)$. What would you need to show in order to prove that $P(x) \forall x \in \mathbb{N}$?
(b) Is this proof correct? If not, explain why. $\forall n \in \mathbb{N}\left(42^{n}=1\right)$
Base Case: $n=0,42^{0}=1$
Inductive Hypothesis: Assume that $42^{k}=1$.
Inductive Step: $42^{k+1}=\frac{42^{k} \times 42^{k}}{42^{k-1}}=\frac{1 \times 1}{1}=1$.

