CS 70 Challenge Problems:
 Stable Marriage
 Solutions at https://alextseng.net/teaching/cs70/
 Alex Tseng

1 Stable Marriage Properties

(a) Recall that the optimal man for a woman is her most preferred man that she may be paired with, across all possible stable pairings. True or False: two women may have the same optimal man.
(b) True or False: In executing the Stable Marriage Algorithm, if the algorithm lasts n days, then there exists a woman who is not proposed to on day $n-3$, assuming $n>3$.
(c) True or False: Upon running the Stable Marriage Algorithm, it is possible that every man gets his last choice.
(d) For a normal run of the Stable Marriage Algorithm, let $P_{i}(M)$ be the rank of the woman that M proposes to on day i. Let $R_{i}(W)$ be the number of the men that W has rejected so far up to i, not including any rejections on day i. For any day i, what is the value of $\sum_{M} P_{i}(M)-\sum_{W} R_{i}(W)$?
(e) Consider an instance of the Stable Marriage Problem with n men and n women. In this instance, there are exactly three stable pairings possible: M_{1}, M_{2}, M_{3}. Every woman is matched to a different man in each of the three matchings, so every woman has a clear ranking of which matching she would prefer (according to her preference list). It turns out that some woman W prefers M_{3} to M_{2} and M_{2} to $M_{1}\left(M_{3}>M_{2}>M_{1}\right)$. True or False: every woman must have the same ranking for the matchings $M_{3}>M_{2}>M_{1}$.

